学术讲座预告:A large data theory for nonlinear wave on the Schwarzschild background

发稿时间:2021-08-05浏览次数:289

题目A large data theory for nonlinear wave on the Schwarzschild background.

时间86日(周9:00-10:00

地点:腾讯会议ID456 964 297

密码210806

主讲人王金花教授


报告人简介

  王金花,厦门大学助理教授。2013年浙江大学博士毕业,2013-2016德国马普所-爱因斯坦研究所 洪堡博士后。主要研究方向为数学广义相对论,双曲偏微分方程。研究兴趣主要包括非线性波方程大初值解,宇宙模型的稳定性,相关工作发表于J. Eur. Math. Soc., Class. Quantum Grav., Ann. Henri Poincaré 等杂志。


报告摘要:

 We study both of the scattering and Cauchy problems for the semilinear wave equation with null quadratic form on the Schwarzschild background.

 Prescribing the scattering data that are given by the short pulse data on the future null infinity and are trivial on the future event horizon, we construct a class of globally smooth solutions backwards up to any finite time and show that the wave travels in such a way that almost all of the (large) energy is focusing in an outgoing null strip, while little radiates out of this strip.

In reverse, considering a class of Cauchy data with large energy norms, there exists a unique and global solution in the future development. And most of the wave packet is confined in an incoming null strip and reflected to the future event horizon, whereas little is transmitted to the future null infinity.