丽水学院非线性分析研究所学术报告

发稿时间:2019-12-27浏览次数:325

题目:Bartnik mass via vacuum extensions


主讲人:谢纳庆

人物简介:谢纳庆,现任复旦大学数学科学学院教授、博士生导师,理学博士(复旦大学,2007年),理学学士(浙江大学,2002年),研究领域数学广义相对论。


摘要:This talk is in continuation to the previous one delivered here on 19 January 2018 in which we modified the MantoulidisSchoen collar extension and discussed the property of the Hawking mass [1]. Later, P.Miao, Y.Wang and the spearker refined the construction of the collar extension and this allowed us to estimate the Bartnik mass [2]. In this talk, the speaker will present a recent joint work with P.Miao. By use of the Shi-Tam metric type construction and a refined Shi-Tam monotonicity, we construct extensions of vanishing scalar curvature for Bartnik data of positive Gauss curvature. This results produces asymptotically flat, time-symmetric, vacuum initial data with an apparent horizon such that the mass of the initial data is arbitrarily close to the optimal value in the Riemannian Penrose inequality [3]. 


参考文献: [1] P.Miao, N.Xie, On compact 3-manifolds with nonnegative scalar curvature with a CMC boundary component, Trans. Amer. Math. Soc. 370 (2018), 5887-5906. [2] P.Miao, Y.Wang, and N. Xie, On Hawking mass and Bartnik mass of CMC surfaces, arXiv:1809.04056. [3] P.Miao, N.Xie, Bartnik mass via vacuum extensions, Inter. J. Math. 30 (2019), 1940006.

时间:20191230

地点:16-302 14:30-16:30