讲座(一)
题目:Uniqueness and stability of traveling waves to the time-like extremal surface
in Minkowski space
摘要:In this talk, we will concern with the uniqueness and stability of traveling
waves to the time-like extremal surface in Minkowski space. For the existence and
uniqueness of traveling wave solutions for timelike extremal surface in Minkowski
space, it can be considered the generalized Bernstein theorem. Furthermore, we
also get the global stability for traveling wave solutions with the speed of
light for extremal surface in (1+3) dimensional Minkowski space. This is a
joint work with Prof.Yi Zhou.
时间:2018年6月29日(周五)9:00-9:40
地点:16-311
主讲人:
刘见礼,男,上海大学理学院副教授。博士毕业于复旦大学数学学院。
已主持国家自然科学基金2项,教育部博士点基金1项,上海市优秀青年教师培养计划1项。
参与国家基金3项。发表学术论文20篇,其中SCI论文16篇,国内外多个杂志审稿人。
曾荣获“2011上海市优秀博士论文”、“2015上海市优秀硕士论文”指导教师、
上海大学研究生十佳'好导师’(第三届)。访问宾州州立大学、纽约大学、上海数学中心等科研单位。
讲座(二)
题目:Space-time L2 estimates, regularity and almost global existence
for elastic waves
摘要:We establish a kind of KSS type estimates for perturbed linear
elastic waves and apply it to give a refined version of almost global
existence of classical solutions for nonlinear elastic waves with small
initial data. Compared with former almost global existence results for
nonlinear elastic waves, the innovation of our one is that the Sobolev
regularity of initial data is assumed to be the smallest among all the
admissible Sobolev spaces of integer order in the standard local existence
theory. This is a joint work with prof. Kunio Hidano.
时间:2018年6月29日(周五)9:45-10:25
地点:16-311
主讲人:
查冬兵,男,东华大学数学系讲师。2008年本科毕业于山东大学数学系,
2014年博士毕业于复旦大学应用数学系。 2017年获上海市科委扬帆计划资助。
发表SCI 论文多篇。
讲座(三)
题目:Stability and instability of the standing waves for the Klein-Gordon-Zakharov
system in one space dimension
摘要:The orbital instability of standing waves for the Klein-Gordon-Zakharov
system has been established in two and three space dimensions under radially
symmetric condition, see Ohta-Todorova (SIAM J. Math. Anal. 2007). In the one
space dimensional case, for the non-degenerate situation, we first check that
the Klein-Gordon-Zakharov system satisfies Grillakis-Shatah-Strauss' assumptions
on the stability and instability theorems for abstract Hamiltonian systems, s
ee Grillakis-Shatah-Strauss (J. Funct. Anal. 1987). As to the degenerate case
that the frequency $|\omega|=1/\sqrt{2}$, we follow Wu (arXiv: 1705.04216, 2017)
to describe the instability of the standing waves for the Klein-Gordon-Zakharov
system, by using the modulation argument combining with the virial identity.
For this purpose, we establish a modified virial identity to overcome several
troublesome terms left in the traditional virial identity.
时间:2018年6月29日(周五) 10:30-11:10
地点:16-311
主讲人:
尹思露,上海大学博士后,2016年博士毕业于复旦大学,师从长江特聘周忆教授,
先后曾访问美国匹兹堡大学、香港科技大学、香港城市大学。
主要研究双曲型偏微分方程的适定性理论,特别是波动方程、弹性波方程。
讲座(四)
题目:Global well-posedness of viscoelastic systems and other related models
摘要:In this talk, we first prove the global existence of small smooth
solutions to the three-dimensional incompressible Oldroyd-B model without
damping on the stress tensor. In the view of treating “nonlinear term”
as a “linear term”, we then apply this result to 3D incompressible viscoelastic
system with Hookean elasticity and prove the global existence of small
solutions without the physical assumption (div–curl structure) as previous
works. And furthermore, we can deal with the 3D compressible viscoelastic
system in the similar view.
时间:2018年6月29日(周五) 11:15-11:55
地点:16-311
主讲人:
朱异,女,华东理工大学理学院讲师。2012年至2017年在复旦大学数学系攻读博士学位,
2015年至2016年访问美国佐治亚理工学院数学系。获得过华东理工大学基础科研业务基金,
上海市青年科技英才扬帆计划基金,中国博士后基金一等资助。
研究方向主要为双曲型偏微分方程,流体理学中的一些方程组。
研究成果在ARMA,JFA,JDE等著名期刊发表。