非线性分析研究所学术讲座预告

发稿时间:2018-06-27浏览次数:592

讲座(一)

题目:Uniqueness and stability of traveling waves to the time-like extremal surface

in Minkowski space

  

摘要:In this talk, we will concern with the uniqueness and stability of traveling

waves to the time-like extremal surface in Minkowski space. For the existence and

uniqueness of traveling wave solutions for timelike extremal surface in Minkowski

space, it can be considered the generalized Bernstein theorem. Furthermore, we

also get the global stability for traveling wave solutions with the speed of

light for extremal surface in (1+3) dimensional Minkowski space. This is a

joint work with Prof.Yi Zhou.

时间:2018629日(周五)9:00-9:40

地点:16-311

主讲人:  

刘见礼,男,上海大学理学院副教授。博士毕业于复旦大学数学学院。

已主持国家自然科学基金2项,教育部博士点基金1项,上海市优秀青年教师培养计划1项。

参与国家基金3项。发表学术论文20篇,其中SCI论文16篇,国内外多个杂志审稿人。

曾荣获“2011上海市优秀博士论文”、“2015上海市优秀硕士论文”指导教师、

上海大学研究生十佳'好导师’(第三届)。访问宾州州立大学、纽约大学、上海数学中心等科研单位。

  

  

讲座(二)

题目:Space-time L2 estimates, regularity and almost global existence

for elastic waves

摘要:We establish a kind of KSS type estimates for perturbed linear 
elastic waves and apply it to give a refined version of almost global
 existence of classical solutions for nonlinear elastic waves with small
 initial data. Compared with former almost global existence results for 
nonlinear elastic waves, the innovation of our one is that the Sobolev 
regularity of initial data is assumed to be the smallest among all the 
admissible Sobolev spaces of integer order in the standard local existence 
theory. This is a joint work with prof. Kunio Hidano.

时间:2018629日(周五)9:45-10:25

地点:16-311

主讲人:

查冬兵,男,东华大学数学系讲师。2008年本科毕业于山东大学数学系,

2014年博士毕业于复旦大学应用数学系。 2017获上海市科委扬帆计划资助。

发表SCI 论文多篇。

  

  

讲座(三)

题目:Stability and instability of the standing waves for the Klein-Gordon-Zakharov

system in one space dimension

摘要:The orbital instability of standing waves for the Klein-Gordon-Zakharov

system has been established in two and three space dimensions under radially

symmetric condition, see Ohta-Todorova (SIAM J. Math. Anal. 2007). In the one

space dimensional case, for the non-degenerate situation, we first check that

 the Klein-Gordon-Zakharov system satisfies Grillakis-Shatah-Strauss' assumptions

on the stability and instability theorems for abstract Hamiltonian systems, s

ee Grillakis-Shatah-Strauss (J. Funct. Anal. 1987). As to the degenerate case

 that the frequency $|\omega|=1/\sqrt{2}$, we follow Wu (arXiv: 1705.04216, 2017)

to describe the instability of the standing waves for the Klein-Gordon-Zakharov

system, by using the modulation argument combining with the virial identity.

For this purpose, we establish a modified virial identity to overcome several

troublesome terms left in the traditional virial identity.

时间:2018629日(周五) 10:30-11:10

地点:16-311

主讲人:

尹思露,上海大学博士后,2016年博士毕业于复旦大学,师从长江特聘周忆教授,

先后曾访问美国匹兹堡大学、香港科技大学、香港城市大学。

主要研究双曲型偏微分方程的适定性理论,特别是波动方程、弹性波方程。

  

讲座(四)

题目:Global well-posedness of viscoelastic systems and other related models 

摘要:In this talk, we first prove the global existence of small smooth

solutions to the three-dimensional incompressible Oldroyd-B model without

 damping on the stress tensor. In the view of treating nonlinear term 

as a linear term, we then apply this result to 3D incompressible viscoelastic

system with Hookean elasticity and prove the global existence of small

solutions without the physical assumption (divcurl structure) as previous

works. And furthermore, we can deal with the 3D compressible viscoelastic

system in the similar view.

时间:2018629日(周五) 11:15-11:55

地点:16-311

主讲人:

朱异,女,华东理工大学理学院讲师。2012年至2017年在复旦大学数学系攻读博士学位,

2015年至2016年访问美国佐治亚理工学院数学系。获得过华东理工大学基础科研业务基金,

上海市青年科技英才扬帆计划基金,中国博士后基金一等资助。

研究方向主要为双曲型偏微分方程,流体理学中的一些方程组。

研究成果在ARMAJFAJDE等著名期刊发表。